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Abstract The size of the struts in nanoporous cellular

solids typically has a secondary influence on the stiffness

of the solids, but it leads to significant stiffening when it is

on the same order as the higher-order material parameter.

We examined this size-dependence using the higher-order

finite-element method (FEM) in this study. Mathematical

analysis showed that the displacement field that satisfies

the conventional Lame equation can serve as a displace-

ment field template in higher-order FEM. Benchmarking

studies showed that results from simulations of beam

bending and rod torsion using this FEM approach were in

good agreement with results from analytical solutions and

experiments. Using this approach, we showed that the

stiffness of cellular solids is strongly affected by the cel-

lular arrangement and the density when the cell size is on

the order of the higher-order material parameter and that

the stiffening behavior in nanoporous polyimide can be

explained using higher-order theory. The FEM results also

showed that a porous solid with half the weight can be

engineered to become as stiff as a fully dense solid if the

porous microarchitecture is tailored to take advantage of

higher-order stiffening.

Introduction

Putting holes into a solid reduces the weight but also

softens the solid. The elastic modulus of cellular foam is

proportional to the elastic properties of the solid (ES) and to

the fourth power of the ratio of the strut size to the cell size

(t/l). Adding more cells or making the cells larger reduces

the stiffness of the internal struts and the elastic modulus of

the foam [1, 2]. The elastic modulus typically varies with

the square of the density such that incorporation of 30%

random cells into a solid would reduce the relative elastic

modulus (E/ES) of the foam to less than half. If the density

is held constant, classical mechanics models and experi-

ments show that the elastic properties are unaffected by the

cell size in cellular solids [3].

When the pores are in the nanometer size range, the elastic

properties are found to behave differently. Han et al. [4]

prepared polyimide nanofoam using a polyimide precursor

with grafted-on liable poly(propylene glycol) oligomer. The

liable component was eliminated at 300 �C resulting in a

nanoporous polyimide with 20–40 nm interconnected pores.

Dynamic mechanical analysis indicated that the nanofoam

had a higher storage modulus compared to solid polyimide.

Similar stiffening of microporous polyimide films produced

via the liable route was reported by Takeichi et al. [5]. They

found that 50% dense polyimide had a comparable elastic

modulus (2.64 GPa) to that of dense solid (2.53 GPa) while

80% dense polyimide had a higher elastic modulus

(3.21 GPa). The number of cells along the film thickness in

Han’s and Takeichi’s studies was well beyond the number

where edge effects [6] would be significant. Instead, the

stiffening observed in these studies may be associated with

size-stiffening arising from the small size of the cell struts.

Size-stiffening [7, 8] and hardening [9–14] were

experimentally observed in nanoindentations as well as in
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micro-rod torsion and micro-beam bending and were

attributed to non-negligible strain gradients. Ashby et al.

[15] recognized that strain gradients can lead to geometri-

cally necessary deformations in materials. In metals, strain

gradients generate additional geometrically necessary

dislocations; in polymers, strain gradients generate geo-

metrically necessary kinks. In both cases, the yield stresses

are observed to increase with the strain gradient in nanoin-

dentations [10, 16]. In polymers, the normalized bending

stiffness of epoxy beams, which is expected to be indepen-

dent of the normalized beam thickness, was found to exhibit

an inverse square of the thickness dependence predicted by

higher-order strain gradient elasticity. The increase is

associated with a bending parameter, bh, which, according to

higher-order elasticity, depends on the higher-order material

parameters, l0, l1, and l2, where l0 is associated with dilata-

tion gradients, l1 is associated with stretch gradients, and l2 is

associated with rotation gradients. Since macromolecular

chains in polymers deform via rotation, only rotation gra-

dients would be active and only l2 would be non-zero among

the higher-order material parameters in polymers. Experi-

ments on the creep deflection of epoxy beams confirmed that

only a single l2 is required to account for the size-dependent

stiffening in the elastic and creep deflection behaviors of

epoxy beams [17]. This means that the spring and dashpot

elements in the higher-order standard viscoelastic model

have the same l2. Since both time-independent elastic and

time-dependent creep deformations are chain rotation based,

this means that the dependence is geometric in character and

is associated with rotation gradients.

Physically, the behavior can be understood using Ashby’s

model for geometrically necessary dislocations under pure

bending. Instead of additional geometrically necessary dis-

locations, additional geometrically necessary rotations are

generated by the strain gradients along the thickness direc-

tion of the beam upon bending of thin beams. The higher-

order stiffening behavior can be described using higher-order

theories such as micropolar media and micromorphic media

[18]. The micropolar theory was reformulated by Fleck and

Hutchinson [9, 19] to explain plastic hardening in the torsion

of micron-sized copper wires. In this couple stress theory,

one additional length parameter for the rotation strain gra-

dient was introduced. Subsequently, Fleck and Hutchinson

developed the strain gradient plasticity theory that incorpo-

rated full second-order derivatives of displacement [20] on

the basis of earlier works [21–24]. Lam et al. [7] extended the

strain gradient theory to the elastic range by recomposing the

strain gradients into dilatation, stretch and rotation parts.

Beam bending solutions were derived on the basis of the new

theory and good agreements with experiments were

obtained. For polymers undergoing small deformation, the

macromolecular chains deform via bond rotation and only

the rotation gradients are active. The deformation behavior

can be described by the couple stress theory with a single

higher-order material length-scale parameter, l2, to account

for the contributions from rotation gradients.

In this investigation, finite-element modeling (FEM) of

couples stress solids was developed and benchmarked.

Subsequently, the stiffening behaviors of cellular solids with

different cell arrangements and densities were modeled

using FEM. We show in this study that the elastic modulus

decreases as a function of decreasing density but then

increases with higher-order stiffening. The conditions

required for this U-turn in the elastic modulus are described.

Higher-order mechanics

According to conventional elasticity theory, the deforma-

tion energy density, w, is a function of strain

w ¼ 1

2
keiiejj þ le0ije

0
ij; ð1Þ

where e0ij is a deviatoric strain,

e0ij ¼ eij �
1

3
emmdij; ð2Þ

and k and l are the bulk and shear modulus, respectively.

When contributions from strain gradients are included, the

deformation energy is a function of both the strain tensor,

eij; and the strain gradient tensor, gijk;

gijk ¼ oijuk; ð3Þ

where qi is the forward gradient operator and uk is the

displacement vector. According to Lam et al. [7], the

deformation energy density for linear elastic center-

symmetric isotropic materials is

wSG ¼ 1

2
keiiejj þ l e0ije

0
ij þ l2

0cici þ l21g
ð1Þ
ijk gð1Þijk þ l2

2v
s
ijv

s
ij

� �
;

ð4Þ

where ci; g 1ð Þ
ijk ; and vs

ij are the dilatation gradient vector, the

deviatoric stretch gradient tensor, and rotation gradient tensor,

respectively. The strain gradient tensors are defined as

ci ¼ gmim; ð5Þ

gð1Þijk ¼ gs
ijk � gð0Þijk

gs
ijk ¼

1

3
ðgijk þ gjki þ gkijÞ

gð0Þijk ¼
1

5
ðdijg

s
mmk þ djkg

s
mmi þ dkig

s
mmjÞ

gs
mmk ¼

1

3
ðgmmk þ 2gkmmÞ;

ð6Þ

where dij is the Kronecker symbol. l0, l1, and l2 are

independent material parameters associated with dilatation

gradients, deviatoric stretch gradients, and rotation gradients,
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respectively. The corresponding higher-order stresses can be

derived from Eq. 4 by taking the partial derivatives of the

energy with respect to eij; ci; g
1ð Þ

ijk ; and vs
ij: The stresses are

rij ¼ kdijemm þ 2le0ij

pi ¼ 2ll2
0ci

sð1Þijk ¼ 2ll2
1g
ð1Þ
ijk

ms
ij ¼ 2ll22v

s
ij;

ð7Þ

where rij is the stress associated with strain, and pi; s
1ð Þ

ijk ; ms
ij

are higher-order stresses associated with the dilatation,

deviatoric stretch, and the symmetric rotation gradient,

respectively. Details of the strain gradient mechanics are

given in a paper by Lam et al. [7].

In polymers, when the equilibrium of the moments of

couples is enforced on the rotations, only the symmetric

parts of the rotation gradient’s contributions are non-zero

and finite [25]. As a result, the deformation energy density,

wcs, for couple stress solids can be simplified to

wCS ¼ 1

2
keiiejj þ l e0ije

0
ij þ l22v

s
ijv

s
ij

� �
; ð8Þ

where l2 is a material length scale parameter, vs
ij is the

symmetric part of the rotation strain gradient, vij; and is

defined as

vs
ij ¼

1

2
ðvij þ vjiÞ; ð9Þ

where

vij ¼
1

2
eipqgjpq ð10Þ

and eijk is an alternating tensor. For this case, where only

rotation gradients are active, all higher-order stress van-

ishes except for ms
ij:

The finite-element method with higher-order effect

Modeling approach

The displacement field in conventional mechanics can be

used as a displacement field template for strain gradient

models in FEM. Mathematically, the higher-order (couple

stress) equilibrium equation is

oirik �
1

2
ejlkoilm

s
ij � oikpi � oijs

ð1Þ
ijk þ fk ¼ 0; ð11Þ

where fk is the gravitation force. For small deformation, the

strain is

eij ¼
1

2
ojui þ oiuj

� �
: ð12Þ

By incorporating the constitutive relationships (7) with the

deformation Eqs. 3, 5–6, and 9–10, the equilibrium

equation (ignoring body forces) can be expressed in

terms of displacements as

k þ 2

3
l

� �
oj um;m

� �
þ lr2uj

� lr2 H1oj um;m

� �
þ H2r2uj

� �
¼ 0; ð13Þ

where r2 is a Laplace differential operator, and

H1 ¼ 2l2
0 � l2

2 þ
4

15
l2
1; ð14Þ

H2 ¼ l2
2 þ

8

15
l2
1 ð15Þ

are material parameters dependent on l’s. In a couple stress

solid, l0 and l1 are negligible, and Eq. 13 becomes

k þ 2

3
l

� �
oj um;m

� �
þ lr2uj

� ll22r2 r2uj � oj um;m

� �� �
¼ 0; ð16Þ

in which the conventional Lame equation,

k þ 2

3
l

� �
oj um;m

� �
þ lr2uj ¼ 0; ð17Þ

is embedded. The conventional displacement fields that

satisfy this conventional Lame equation will also satisfy

the higher-order equilibrium and governing equations in

the bulk of the domain. This is demonstrated in the higher-

order torsion and bending solutions [7, 16] that are func-

tionally identical to the conventional solutions, except for

an inverse squared dependence on the beam thickness and

the rod’s diameter, which account for the higher-order

dependence. This means that at a constant beam deflection

or twist, the higher-order solution and the conventional

solution share similar displacement fields everywhere

except at the boundary where the strain gradients affect the

boundary behavior. However, Lam et al. [7] have shown

that the effect of strain gradients at the fixed end of a

bending cantilever is minor. In short beams (a ratio of

length to thickness equal to 5), the error due to higher-order

boundary conditions is less than 11%, which is less than

typical experimental error. The recognition of this enables

the use of displacement fields that satisfy the conventional

Lame equation as a displacement field template in the

development of the higher-order solution.

Deformation energy and FEM formulation

In elastic materials, the total potential energy, P, is

P ¼ Uc þ Uh �Wc �Wh; ð18Þ

where Uc is the conventional elastic energy, Uh is high-

order (couple stress) deformation energy, and Wc and Wh

are the work done by conventional external forces and

J Mater Sci (2009) 44:985–991 987

123



high-order external forces, respectively. Uc and Uh can be

determined from the displacement field in FEM, which is

obtained by solving the conventional stress equilibrium

equations with corresponding boundary conditions. The

discrete equilibrium equations in an element are

Ke½ � qef g ¼ Pef g; ð19Þ

where {qe} and {Pe} are the nodal displacement and nodal

force, respectively. [Ke] is the element stiffness matrix,

½Ke� ¼
Z

Ve

B½ �T C½ � B½ �dV ; ð20Þ

where [B] is the strain-displacement matrix and [C] is the

elastic matrix. The nodal displacement is obtained by

solving the equilibrium equations. The displacement inside

an element is deduced by interpolation of the nodal

displacements,

ui ¼
XM
r¼1

Nrqr
i ; ð21Þ

where ui denotes the displacement component, Nr is the

shape function of node r, M is the number of nodes in the

element, and qr
i is the nodal displacement component value

of node r. The strain field is

eij ¼
1

2

XM
r¼1

qr
i rjN

r
� �

þ riN
rð Þqr

j

h i
; ð22Þ

where the gradient operator, ri; is

ri ¼
o

oxi
: ð23Þ

The corresponding strain gradient field is

gijk ¼
XM

r¼1

ri rjN
r

� �� �
qr

k: ð24Þ

The invariant strain gradient tensor components can be

derived from Eq. 9–10 and 5–6; and the stresses and high-

order stresses can be obtained using Eq. 7. Using the

Gaussian numerical integral method, the deformation

energy in an element is calculated from

weCS ¼
Z

Ve

wCSdV ð25Þ

for couple stress solids, where wCS is defined in Eq. 8. The

total deformation energies of the structure are

UCS ¼ Uc þ Uh ¼
XLe

s¼1

weCS; ð26Þ

where Le denotes the total element number in the structure.

By noting that dP ¼ 0; the applied force for the higher-

order case can be computed numerically using

FI
i ¼

dUCS

duI
i

; ð27Þ

where I denotes the specific force and the displacement at

the same location. The total force for the structure is simply

Fi ¼
XK

I¼1

FI
i : ð28Þ

Using this procedure, three-dimensional 8-node and

20-node finite elements were constructed to simulate

the deformation behavior of higher-order solids. Beam

bending models and rod torsion models were developed.

The results were benchmarked with analytical solutions

and experimental results and good agreements were

obtained (Appendix 1). The benchmarked method is used

to examine the deformation of cellular solids below.

Stiffening behavior in nanoporous cellular solids

At a fixed density, the elastic modulus of cellular solids is

independent of the strut size, but it becomes size-dependent

if there is stiffening. We shall examine the stiffening effect

as a function of the strut size in simple cubic (SC) and face-

centered cubic (FCC) cellular solids (Fig. 1).

The tensile deformation behaviors of porous films with

and without stiffening were analyzed using the finite-ele-

ment method outlined in the previous section. Films with

seven-unit length, three-unit width, and two-unit thickness

were built and loaded along the length direction. In the

simulations, the porosity was varied from *10% to

*45%.

The effects of l2/L on the elastic modulus of the films are

shown in Fig. 2. The curves show that doubling l2/L from

0.3 to 0.6 can approximately double the stiffening in both

SC and FCC films, although the stiffening in the FCC films

is higher by approximately 30% relative to that in the SC

films at the same density.

The stiffening as a function of the relative density is

shown in Fig. 3a for SC film. The results show that the

stiffness can become equal or higher than the stiffness of

the fully dense solid (Fig. 3) with half the density.

Discussion

The notion of a porous solid having higher stiffness than a

dense solid has been recognized in porous polyimide films

with nanostruts. These films were experimentally observed

to have an elastic stiffness that was 12% higher than that of

the solid polyimide film. The FEM results in this study

showed that the significantly higher stiffness is pres-

ent if the cellular solid is engineered with a proper
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microarchitecture, i.e., l2/L and the density. Significant

stiffening occurs when the higher-order length scale

parameter, l2, is on the order of the size of the cell L. The

fact that nanostrutted polyimide is observed to have

stiffening suggests that the l2 for polyimide is in the

nanometer range. More investigations are needed to char-

acterize the l2 of materials such that the strut size in cellular

solids can be tailored to be on the order of l2 to engender

high stiffness in the cellular solid at half the weight.

Conclusions

The higher-order finite-element method was developed

upon recognition that the displacement field satisfying the

conventional Lame governing equations for elastic solids

can also serve as a displacement field template to satisfy

the higher-order Lame equation. A modeling method to

account for the higher-order deformation was developed

and this approach was shown to be in good agreement

with experimentally benchmarked bending and torsion

solutions. The developed method was used to analyze the

higher-order stiffening behavior of cellular solids. The

results showed that the elastic modulus of porous solid
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that initially decreases with increasing porosity will

reverse and then increase when there is significant

higher-order stiffening. This suggests that a proper

selection of the higher-order material properties, micro-

cellular architecture, and density can generate porous

solids that are equally stiff as dense solids, but with half

the weight.
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Appendix I: FEM verification

Higher-order strain gradient solutions are available for

torsion, pure bending, and cantilever bending. A two-

dimensional eight-node high-order element was used to

model the higher-order deformation behavior in cantilever

bending and pure bending. A three-dimensional 20-node

high-order element was used in the torsion case.

Bending of micro-beams

Pure bending and cantilever bending cases are sketched in

Fig. 4. For the pure bending case with small deformation,

an analytical solution was developed [22]. The ratio of the

total moment to the conventional moment in pure bending

of a beam with elasticity is

M

M0

¼ 1þ 6 1� vð Þ l2

h

� �2

: ð29Þ

In the absence of higher-order effects, M reverts to the

conventional M0. A comparison of the moment ratio

between FEM and the analytical solution in Eq. 29 is

shown in Fig. 5.

The bending rigidities for beams with different thick-

nesses are plotted in Fig. 6. These results show that the

FEM results for pure bending and for cantilever bending,

where there is shear, are in good agreement with experi-

mentally benchmarked analytical models.

Torsion

The behavior of micro-rod torsion was also examined and

its typical mesh is illustrated in Fig. 7. The solution for a

couple stress solid rod under torsion was derived in [25]

and is given as

Q ¼ Q0 1þ 6
l2

r

� �2
" #

; ð30Þ

(a) Pure bending  (b) Cantilever bending 

x

z

x

z

Fig. 4 Sketches of two kinds of

micro-beam bending
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where Q and Q0 are the couple stress torque and conven-

tional torque, respectively, and r is the radius of the micro-

rod. The FEM results are consistent with the analytical

solution according to Fig. 8.
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